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Conformal theory of spin correlations in the semi-infinite 
3-state Potts and self-dual 2, models 
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t Department of  Physics, Temple University, Philadelphia, PA 19122, USA 
i Department of Physics, Villanova University, Villanova, PA 19085, USA 

Received 27 November 1990 

Abstract. In the conformal theory the magnetization operator of  the critical 3-state Potts 
or self-dual Z ,  model is degenerate at level 6.  Salving a sixth-order differential equation, 
we calculate the bulk 4-spin correlation function and the spin-spin correlation function 
in the half space. The spin-spin correlation function of the semi-infinite self-dual Z ,  model 
is also obtained for arbitrary N. Both free- and fixed-spin boundary conditions are 
considered. 

With the conformal-invariance approach [l, 21 the critical indices of a large class of 
two-dimensional critical systems, known as minimal or degenerate theories, have been 
derived. The conformal theory also provides linear differential equations that determine 
the many-point correlation functions of these systems. 

Cardy [3] has extended the conformal-invariance approach to semi-infinite critical 
systems with a conformally invariant boundary condition. He showed that the n-point 
correlation function in the semi-infinite geometry is determined by the same differential 
equations as the bulk 2n-point correlation function. 

In this paper we first consider the critical 3-state Potts or self-dual Z3 model. 
Dotsenko [4] has classified the primary operators of this model according to the 
conformal theory and calculated the bulk 4-point correlations ( E E E E )  and ( E E U ~ )  of 
the energy density E and spin or magnetization operator U. Since the energy density 
is degenerate at level 2, these quantities are determined by second-order differential 
equations. Recognizing that the energy density remains degenerate at level 2 for Q # 3, 
Dotsenko and Fateev [5] obtained these 4-point functions for general Q. The differential 
equations for the bulk 4-point correlations of the energy density also determine the 
energy-energy correlation function in the half-space, which has been calculated by 
Cardy [3]. 

The scaling index of the spin or magnetization operator of the Q-state Potts model 
has been identified [4,5] with p = f ( m  - I ) ,  q = f ( m + l )  in the conformal theory, 
where 4 = 2 cos[ v(  m + l)-’]. For the 3-state Potts model m = 5 and pq = 6. Thus the 
4-spin correlation function is determined by a sixth-order differential equation. Despite 
the high order it can be solved analytically, as we show in the paper. From the solutions 
we obtain the bulk 4-spin correlation function and the spin-spin correlation functions 
in the half space for free- and fixed-spin boundary conditions. The Potts spin operator 
is a vector, and its half-space correlation functions are of interest in the general theory 
of surface critical phenomena [6 ] .  Previous calculations with conformal invariance 
[3,7] of correlations near boundaries have only considered scalar operators. 
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With an entirely different approach, based on the algebra of parafermion currents, 
Zamolodchikov and Fateev [8] have derived the bulk 4-spin correlations of critical 
Z,-symmetric self-dual systems. In the limit N + 3, corresponding to the 3-state Potts 
model, their results agree with ours. The 4-spin correlation function only involves two 
of the six solutions to the sixth-order differential equation, and it is interesting to see 
what physical considerations rule out the other solutions. Making use of the results 
of Zamolodchikov and Fateev, we also obtain the spin-spin correlation function of 
the semi-infinite self-dual Z, model for arbitrary N. 

We assign the spin variable u the values U= 1, exp(2ai/3), exp(4ai/3) in the three 
states of the Potts model. The complex conjugate d satisfies 6 = U-’. In the absence 
of symmetry breaking the correlation functions (uu), (uuuu), (uuue) and their complex 
conjugates vanish identically, whereas (u6) and (uud6) do not. As mentioned above, 
the scaling index A2,’=& of the spin variable corresponds to degeneracy at level 6. 
Thus, according to the conformal theory [1,2] the bulk 4-spin correlation function 
G(z,,  . . . , z4) = (u(l)e(2)~(3)t?(4)) is annihilated by a sixth-order differential 
operator. Determining the numerical coefficients with the Virasoro commutation rela- 
tions, we obtain the partial differential equation 

[ L e ,  -+y9!12-2 + G2?,2!2 + %2?,2-’ - %Le2 - -2:,x2ZJ -T2-,2-4 2 
3004 

+ - 2 e i , + - ~ - 2 2 - e - - 4 + - 2 ~ I ~ e S - ~ ~ - e _ , ] X  547424 G ( z , , . .  . , zq)  

= O  (1) 

where 

The z, are complex position coordinates, and zmP = z, - zP.  

plane onto itself implies the functional form [l, 21 
Invariance of the 4-spin correlation function under Mobius mappings of the complex 

(3) 
2,3224 

G b , ,  . . . , zJ = (2122J4)-2”5$(x) x=- 
z1422J 

With the help of a computer program for symbolic manipulations [9], we inserted 
equations (2) and (3) into (1) and obtained the ordinary sixth-order differential equation 

d6 2 dS 
d x  15 d x  

~ ~ ( x - 1 ) ~ ~ + - ( 1 4 8 ~ - 7 7 ) ~ ~ ( ~ -  1 ) 4 ~  

2 d4 
1s d x  

+-I ( 1 3 3 2 4 ~ ~ -  13839x+2674)x4(x- 1)3 7 

2 d’ 
1s dx +: (416926x’-64778Sx2+245S5S~ - 1 0 3 9 4 ) ~ ’ ( ~  - 1)2 7 

4 
1s +a ( 1 9 1 0 5 6 4 ~ ~ -  3942607x3+ 2 1 6 9 4 5 1 ~ ~  

d2 
dx 

-122962x-47656)x2(X-l)7 
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4 
15  
+y (2613 1462  -67O9623x4+4495417x3 

d 
dx  

+191602~~-523968~-38224)x-  

1 32 
15 
+d (l634x4+3144x3+ 10019x2+3144x+ 1634)(x- 1)  $(x) = O  (4) 

for the function $(x). Equation (4) has six linearly independent power-series solutions 
$ , ( x ) = x - 2 i 1 5 F ( $  -1. 2. , 5,5,x) 

$2(x) =X-'/'5F(f -L. 2 .  , 5.5.x) 

, 5 , 5 ,  x) 

$4(x) = xsilsF(; 2. s.  , 5 . 5 .  x) 

( ~ ~ ( ~ ) = ~ ~ / ~ ~ ( 1 - ~ ) ~ 1 ~ 5 ~ ( t , : ; f ;  x). 

,,,3(x) = X 4 / 1 5 ~ ( ;  1.1. 

( 5 )  

+5(x)=x-2/15(1 - x ) ~ ~ ~ s ~ ( ~  -1.2. 
5 .  5 , 5 . X )  

Here the F(a,  6; c; x )  are standard hypergeometric functions [lo]. Note that J l , ( x )  
and $5(x) both vary as x-'/15 and that $3(x) and &,(x) both vary as x4/" for JxI<< 1 .  

Below we will need the continuation relations 

The matrix of coefficients av is given by 

0 a126 a / 2  
a 0 6  0 
0 0 0  

3a -36 
a/b 0 -a  0 
0 0 0  0 

a=a-'= 

0 2a 0 -a136 0 0 
0 26 0 a/3 0 (7) 

Equations (6) and (7) follow from ( 5 )  and a standard relation [lo] between hyper- 
geometric functions with arguments x and 1 -x. 

The bulk 4-spin correlation function, which satisfies similar differential equations 
in the complex coordinates z, and f,,, has the form 

( 4 1 ) 6 ( 2 ) 4 3 ) 8 ( 4 ) )  = I Z I ~ Z ~ ~ I - " ' ~  1 A c $ i ( x ) $ j ( X )  
i.j 

where 

E h !  =x A , a i h a j i  
i j  

as follows from equation (6). We now determine the coefficients A,, E,. 
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The requirement that the 4-spin correlation function be single-valued when con- 
tinued around the singular points x = 0 and 1 rules out all off-diagonal matrix elements 
except A,,, A,, , A,,, A,, and B , , ,  B S I ,  &, E,, . However, non-vanishing values for 
these off-diagonal matrix elements are incompatible with equations (7) and (9). Thus 
the matrices A, and B, are both diagonal. 

The 4-spin correlation function of equation (8) must clearly be invariant under 
interchange of points 1 and 3 or points 2 and 4. This and the diagonal property of A, 
:.....I.. “ l n p ~  

The relation 

follows from another well known property of hypergeometric functions [IO]. All of 
the P, vanish except P I S ,  PSI ,  p36. p6,, pZ2 and which have modulus lp,l = 1. 
Thus from equations (10) and (111, we conclude 

Ai,=As, A,,=&. (12) 

Finally we require that (u(1)6(2)~(3)6(4))  approaches (u(l)a(Z))(u(3)6(4)) = 
12,22341-4/15 in the limit z13+c0 with q2 and z3& fixed and approaches 
(u(l)u(3))(S(Z)a(4))=0 in the limit z I 2 + m  with z,, and zZ4 fixed. These two limits 
correspond to x + 1 and x + 0, respectively. Making use of equations ( 5 )  and (S), we 
otatain 

A,,+A,,=O B, ,+  B,, = 1. (13) 

Equations (7), (9), (12) and (13) determine all the A, and B,. The bulk 4-spin 
correlation function is given by equations ( 5 )  and (S), where 

l.2 

(14) 

This result agrees with the 4-spin correlation function of the self-dual Z ,  model, 
calculated by Zamolodchikov and Fateev [8], in the limit N + 3 corresponding to the 
3-state Potts model. 

Next we consider the semi-infinite geometry. Cardy [3] has shown that the n-point 
function of a critical system defined on the half plane y > 0 with a conformally-invariant 
boundary condition satisfies the same differential equations in the variables 
z,, i,, . . . , z., in as the hulk 2n-point correlation function in the variables 
z I ,  z2, .  . . , zZn. Thus, on making the replacement z , ,  z 2 .  z,, z4+ z , ,  t,, z2, i2 in 
equations (3), ( 5 )  and (6), we obtain 

U 
L2 
U 

A.. =4-  Si2S;2+iSi48;4 B, = &S,,+- Sj6S;,. 
” a a 
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for the spin-spin correlation function. Here r = Iz, - z21 and 

Bj = Aimv 
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(16) 

as follows from equation (6). We now determine the coefficients A;, B;. 

expansions 
The results (8) and (14) for the bulk 4-point function imply the operator product 

u ( R + & r ) 5 ( R - $ r ) =  r-4/15[l + C r 4 / ’ ~ ( R ) + .  , .] 
(17) 

u (R+fr )u(R - f r )  = r -y ’ s [Dr2 / ’55 (R)  + Er4l3w(R) +. . .] 
in the limit r+O.  Here E is the principal energy operator, and w is a non-leading 
magnetization operator. The quantities C, D, E are structure constants. The dots denote 
contributions of operators with scaling dimensions that differ from those of the indicated 
operators by integers. For consistency with the first of equations (17) in the limit r+O,  
the coefficients B, in equation (15) must satisfy 

B,+B,=l B, = B4 = O  (18) 

A,= A,=O. (19) 

First we consider the case of free boundary conditions. According to a result of 
Cardy [3] the spin-spin correlation function decays as r-4‘3 in the surface limit r + 00 

with y ,  and y ,  fixed. Together with equation (19) this requires that all the A, except 
A, vanish. Equations (7), (16), ( IS ) ,  and (19) determine A, uniquely and yield 

which with equations (7)  and (16) yields 

Next we consider the case of boundary spins fixed in the state U = 1. With this 
boundary condition the profiles (U) = (5)ot are non-vanishing, which together 
with equation (19) requires A, f O  in equation (IS). In general the connected part of 
the spin-spin correlation function decays more rapidly parallel to the surface for fixed 
spin boundary conditions than for free boundary conditions [ 3 , 6 ,  111. Thus all the A; 
vanish except A, ,  which is uniquely determined by equations (7), (16) and (18). In 
this way we obtain 

For fixed-spin boundary conditions there is a second non-vanishing spin-spin 
correlation function ( U U ) ~ ~ ~ ~ .  It can also be expanded in terms of the functions +, as 
in equation (15). with different coefficients A,, B,. For consistency with the second 
operator product expansion in (171, all the and & must vanish. Again 
we assume that (uu)Rrsd decays faster than (u&~ parallel to the boundary. These 
considerations, the normalization (u(I))(u(2))  =f(d+ 1)(4y,yJZ’” fixed by equation 
(21). and equations (7)  and (16) then determine all the Ac and 6,. The final result is 

except 

According to Burkhardt and Cardy [Ill,  in a d-dimensional semi-infinite critical 
system the connected pair correlation function ( ~ ( 1 ) ~ ( 2 ) ) - ( ~ ( 1 ) ) ( ~ ( 2 ) )  of any 
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operator with a non-vanishing profile (4) decays, in general, as rFZd parallel to the 
boundary. Our results (21) and (22) for the spin-spin correlation function with fixed- 
spin boundary conditions are consistent with this prediction. The prediction does not 
apply to the two-point correlations of the quantity U - 6 in the presence of boundary 
spins fixed in state 1 since the profile (U-6) vanishes identically. From equations (21) 
and (22) we see that ( [ U ( l ) - 6 ( l ) ] [ U ( 2 ) - ~ ( 2 ) l ) ~ ~ ~ d  decays as r-6 in the surface limit 
r + m with y, and y2 fixed. The corresponding surface scaling dimension 3 has also 
been derived by Cardy [12] for the 3-state Potts model. 

In equations (8) and (14) the bulk 4-spin correlation is expressed in terms of only 
two solutions, $*(x)  and J14(x), of the sixth-order differential equation ( 4 ) .  It is an 
interesting fact that one can generate the other four solutions from these two solutions 
without using the detailed form of the differential equation. If a function ( z , ~ z J ~ ~ J I ( x )  
satisfies the differential equations for the bulk 4-spin correlation function, then 
( Z , ~ Z , ~ ) - ~ ~ $ ( X - ~ )  and (z,,z,,)-*"(l - x - ' ) ' ~ J I ( ~  - x )  are also solutions. This follows 
from the symmetry of the differential equations in the coordinates z,, . . . , z4. Thus 
from each of the solutions $,(x), J14(x) we obtain two additional solutions. Rewriting 
the hypergeometric functions with arguments x-' and 1 - x  in terms of hypergeometric 
functions with argument x, we reproduce the other four solutions in equation (5). 

In the self-dual Z N  model [SI the spin variables U take the N values 
1, w, 02,. . . , where o = e x p ( 2 ~ i / N ) .  The scaling indices A(N, k )  of the mag- 
netization operators uh, k = 1,2,. . . , N are given by 

T W Burkhardt and I Guim 

k ( N - k )  
2 N (  N + 2) 

A( N ,  k )  = 

and the central charge by c = 2( N - 1)/( N + 2). Note that c > 1 for N > 4. Zamolod- 
chikov and Fateev [8]  have calculated the bulk correlation function 
( u ( l ) 6 ( 2 ) ~ ( 3 ) ~ 6 ( 4 ) ~ )  of the system. As in equations (8) and (14), the correlation 
function is given in terms of two functions JI,!".*'(x) and $!,"."(x), which, apart from 
power-law prefactors, are hypergeometric. 

Specializing ta the case k = 1, we generate two additional solutions from each of 
these functions by the procedure outlined two paragraphs above. Constructing surface 
correlation functions from the set of six solutions, we obtain 

where 

Tr 
A=Zcos- 

N + 2 '  
4 ~ ~ ~ 2  

r2 + 4y1y2  
5 =  
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Equations (24) are consistent with the operator-product expansion deduced from the 
bulk 4-spin correlation function of the ZN model. In the limits N + 3  and N + 2  they 
reproduce our expressions (20)-(22) for the semi-infinite 3-state Potts model and 
Cardy's results [3] for the semi-infinite king model, respectively. 

In the surface limit r + o o  with y, and yz fixed, the three spin-spin correlation 
functions in equation (24) decay as r -2 (1 -N- ' )  , F4 and rC4 respectively. The result for 
free boundary conditions agrees with the conjecture x,( N, k) = k( 1 - k N - ' )  of Vander- 
zande [13] and Alcaraz [14] for the surface scaling dimension of the operator uk. The 
r-4decay for fixed boundary spins is consistent with the general result r-2d for operators 
with non-vanishing profiles given in [ll]. From equation (24) one finds that ([u(l)- 
6(1)][u(2) -6(2)])6rsd falls off as rF6 parallel to the boundary. 

In conclusion we have calculated the spin-spin correlation function of the critical 
semi-infinite 3-state Potts model with free- and fixed-spin boundary conditions. This 
was done by solving a sixth-order differential equation from the conformal theory. 
Making use of the results of Zamolodchikov and Fateev [8] for the bulk 4-spin 
correlation function of the critical self-dual ZN model, we also obtained the spin-spin 
correlation function in the half space for arbitrary N. 
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